Neural-symbolic Integration: Constructive Aproaches for First-Order Logic Programs
نویسندگان
چکیده
From January 20 to 25 2008, the Dagstuhl Seminar 08041 Recurrent Neural NetworksModels, Capacities, and Applications was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The rst section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available.
منابع مشابه
Integrating First-Order Logic Programs and Connectionist Systems — A Constructive Approach
Significant advances have recently been made concerning the integration of symbolic knowledge representation with artificial neural networks (also called connectionist systems). However, while the integration with propositional paradigms has resulted in applicable systems, the case of first-order knowledge representation has so far hardly proceeded beyond theoretical studies which prove the exi...
متن کاملNeural-Symbolic Integration Constructive Approaches
The field of neural-symbolic integration has received much attention recently. While with propositional paradigms, the integration of symbolic knowledge and connectionist systems (also called artificial neural networks) has already resulted in applicable systems, the theoretical foundations for the first-order case are currently being laid and first perspectives for real implementations are eme...
متن کاملInvited Keynote Talk Modeling Reasoning Mechanisms by Neural-Symbolic Learning
Currently, neural-symbolic integration covers – at least in theory – a whole bunch of types of reasoning: neural representations (and partially also neural-inspired learning approaches) exist for modeling propositional logic (programs), whole classes of manyvalued logics, modal logic, temporal logic, and epistemic logic, just to mention some important examples [2,4]. Besides these propositional...
متن کاملNeural-symbolic integration
The field of neural-symbolic integration has received much attention recently. While with propositional paradigms, the integration of symbolic knowledge and connectionist systems (also called artificial neural networks) has already resulted in applicable systems, the theoretical foundations for the first-order case are currently being laid and first perspectives for real implementations are eme...
متن کاملThe Core Method: Connectionist Model Generation for First-Order Logic Programs
Research into the processing of symbolic knowledge by means of connectionist networks aims at systems which combine the declarative nature of logicbased artificial intelligence with the robustness and trainability of artificial neural networks. This endeavour has been addressed quite successfully in the past for propositional knowledge representation and reasoning tasks. However, as soon as the...
متن کامل